This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells. Additionally, they demonstrate antidiabetic activity by inhibiting α-amylase and α-glucosidase. The cardioprotective effects of perilla peptides are underscored by ACE-inhibitory activities and combat oxidative stress through enhanced antioxidant defenses. Further, perilla peptides contribute to improved gut health by enhancing beneficial gut flora and reinforcing intestinal barriers. In liver, kidney, and testicular health, they reduce oxidative stress and apoptotic damage while normalizing electrolyte levels and protecting against cyclophosphamide-induced reproductive and endocrine disruptions by restoring hormone synthesis. Promising anticancer potential is also demonstrated by perilla peptides through the inhibition of key cancer cell lines, alongside their anti-inflammatory and immunomodulating activities. Their anti-fatigue effects enhance exercise performance and muscle function, while perilla seed peptide nanoparticles show potential for targeted drug delivery. The diverse applications of perilla peptides support their potential as functional food additives and therapeutic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719718 | PMC |
http://dx.doi.org/10.3390/foods14010047 | DOI Listing |
Foods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China. Electronic address:
Background: Perilladehyde, an extract of perillae in the Labiatae family, can produce significant anti-inflammatory and antioxidant effects. Although literature evidences the favorable effect of perillaldehyde on ischemic stroke, the exact mechanism remains blurred.
Purpose: This study attempted to explore the impact of perillaldehyde on cerebral ischemia-reperfusion injury and the related action mechanism.
Nutrients
December 2024
Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
Adequate sleep is essential for maintaining cognitive function, as evidenced by literature. var. (PF) is a traditional medicinal herb reported to improve vascular cognitive impairment and induce sedation.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
School of Innovation and Intrepreneurship, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
Background: Perilla (Perilla frutescens L. Britt.) is an important oilseed and medicinal crop that frequently faces seasonal drought stress during seed germination, leading to a loss of dehydration tolerance (DT), which affects seed emergence and significantly reduces yield.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!