Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases. Compared to conventional PSVs (C-PSVs), D-PSVs exhibited a more robust and longer-lasting inhibitory effect on the inflammatory response triggered by lipopolysaccharides and interferon-γ in a primary bone marrow-derived macrophage model. Transcriptome analysis indicated that the inhibitory effect of D-PSVs was mainly achieved by modulating inflammation-related signaling pathways, leading to a reduction in the expressions of pro-inflammatory genes. In an imiquimod-induced psoriatic dermatitis mouse model, topical application of D-PSVs effectively mitigated inflammation in the skin microenvironment and reduced lesion severity. These improvements were attributed to the superior skin permeability and more persistent adhesion of D-PSVs to macrophages compared with C-PSVs. In summary, this macrophage-targeted microvesicle offers a promising non-invasive approach to managing inflammatory skin diseases by persistently inhibiting M1 macrophage polarization and restoring immune microenvironment balance.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms26010394DOI Listing

Publication Analysis

Top Keywords

skin diseases
12
skin
9
low-modulus phosphatidylserine-exposing
8
phosphatidylserine-exposing microvesicle
8
macrophage polarization
8
inflammatory skin
8
function skin
8
microvesicle alleviates
4
alleviates skin
4
skin inflammation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!