Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses. The expression of was induced significantly by low-iron and high-iron treatments and -overexpressed plants displayed iron-stress-tolerant phenotypes. A determination of physiological and biochemical indexes associated with abiotic stress responses showed that overexpression of increased the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in plants treated with iron stress, and decreased the contents of HO and malondialdehyde (MDA), which contribute to reduce cell membrane lipid peroxidation. Meanwhile, the accumulation of proline in transgenic plant cells increased, regulating cell osmotic pressure. Furthermore, quantitative expression analysis indicated that overexpression of improved the expression levels of positive functional genes' responses to iron stress, improving plant resistance. Interestingly, may have the ability to balance the homeostasis of iron and other metal ions for the iron homeostasis of cell under low-iron environments. This research demonstrates that is a key regulator of cell iron homeostasis in plants under iron deficiency, providing new knowledge for plant resistance regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720179 | PMC |
http://dx.doi.org/10.3390/ijms26010368 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland.
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China.
and are opportunistic pathogens that cause severe infections in hospitals, and their co-infections are increasingly reported. The interspecies interactions between these two bacterial species and their potential impacts on infections are largely unexplored. In this study, we first demonstrated that inhibits the growth of by iron chelating via quorum sensing.
View Article and Find Full Text PDFMicroorganisms
January 2025
VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.
Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!