Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied. However, the waterlogging tolerance of sesame still has relatively few studies. In this study, two kinds of sesame, R (waterlogging-tolerant) and S (waterlogging-intolerant), were used as materials, and they were treated with waterlogging stress for 0, 24, 72, and 120 h. Physiological analysis showed that after waterlogging, sesame plants responded to stress by increasing the contents of ascorbate peroxidase (APX), glutathione (GSH), and some other antioxidants. The results of the multi-omics analysis of sesame under waterlogging stress revealed 15,652 (R) and 12,156 (S) differentially expressed genes (DEGs), 41 (R) and 47 (S) differentially expressed miRNAs (DEMis), and 896 (R) and 1036 (S) differentially accumulated metabolites (DAMs). The combined DEMi-DEG analysis that 24 DEMis regulated 114 DEGs in response to waterlogging stress. In addition, 13 hub genes and three key pathways of plant hormone signal transduction, glutathione metabolism, and glyoxylate and dicarboxylate metabolism were identified by multi-omics analysis under waterlogging stress. The results showed that sesame regulated the content of hormones and antioxidants and promoted energy conversion in the plant through the above pathways to adapt to waterlogging stress. In summary, this study further analyzed the response mechanism of sesame to waterlogging stress and provides helpful information for the breeding of plants for waterlogging tolerance and genetic improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26010351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!