Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear. We harvested the secretome from human mucosal OECs and characterized its protein content, identifying 709 proteins in the human OEC secretome from three donors in two passages. Thirty-nine proteins, including neurological-related proteins, such as profilin-1, and antioxidants, such as peroxiredoxin-1 and glutathione S-transferase, were shared between the six samples. The secretome consistently demonstrated potential effects such as antioxidant activity, neuronal differentiation, and quiescence exit of neural stem cells (NSCs). The total secretome produced by OECs protects NSCs from HO-induced reactive oxygen species accumulation. During induction of neuronal differentiation, secretomes promoted neurite outgrowth, axon elongation, and expression of neuronal markers. The secretome ameliorated bone morphogenetic protein 4- and fibroblast growth factor 2-induced quiescence of NSCs. The human OEC secretome triggers NSCs to exit prime quiescence, which is related to increased phosphoribosomal protein S6 expression and RNA synthesis. The human OEC secretome has beneficial effects on NSCs and may be applied in neurological disease studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720278PMC
http://dx.doi.org/10.3390/ijms26010281DOI Listing

Publication Analysis

Top Keywords

human oec
16
oec secretome
16
secretome
10
olfactory ensheathing
8
neural stem
8
stem cells
8
neuronal differentiation
8
oec
5
human
5
nscs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!