The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary. To achieve this, we developed the splice isoform neoantigen evaluator (SINE) pipeline. Our tool documents peptides present on spliced or inserted genomic regions of interest using Patient Harmonic-mean Best Rank scores, calculating the MHC-I/II binding affinity across the complete human leukocyte antigen landscape. Here, we found 125 potentially immunogenic events and 9 principal binders in a cohort of head and neck cancer patients where the corresponding wild-type peptides display no MHC-I/II affinity. Further, in a melanoma cohort of patients treated with anti-PD1 therapy, the expression of immunogenic splicing events identified by SINE predicted response, potentially indicating the existence of immune editing in these tumors. Overall, we demonstrate SINE's ability to identify clinically relevant immunogenic neojunctions, thus acting as a useful tool for researchers seeking to understand the neoantigen landscape from aberrant splicing in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720059 | PMC |
http://dx.doi.org/10.3390/ijms26010205 | DOI Listing |
Int J Mol Sci
December 2024
Moores Cancer Center, University of California San Diego, San Diego, CA 92037, USA.
The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.
View Article and Find Full Text PDFNeuro Oncol
February 2024
German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma.
Methods: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T).
Int Immunopharmacol
October 2023
Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore 721102, West Bengal, India; Agricure Biotech Research Society, Midnapore, 721101, India. Electronic address:
Background: Recently, in Nov 2021, in South Africa, the SARS CoV-2 variant Omicron was found to be highly infectious and transmissible but with the least fatality. It occupies the nasopharynx-oropharynx and easily spreads. The epidemiological data/reports suggest that several vaccines failed to neutralize Omicron.
View Article and Find Full Text PDFVet Med Sci
January 2023
Department of Clinical Laboratory, The Third Medical Centre of Chinese PLA General Hospital, The Training Site for Postgraduate of Jinzhou Medical University, Beijing, China.
Background: Brucellosis, caused by Brucella spp., is a major zoonotic public health threat. Although several Brucella vaccines have been demonstrated for use in animals, Brucella spp.
View Article and Find Full Text PDFImmunol Res
April 2023
Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!