Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg. Our main findings were as follows: (1) Elevated Mg levels augmented superoxide dismutase (SOD) activity, bolstering antioxidant defenses, whereas low Ca and Mg levels diminished SOD activity. High Ca levels enhanced catalase (CAT) activity during kernel development. Low-Ca conditions stimulated gibberellin (GA) synthesis, while high-Ca and high-Mg conditions suppressed it. High Mg levels also elevated abscisic acid (ABA) levels, potentially improving stress tolerance. (2) High Ca levels increased the reducing sugar content in kernels, augmenting the energy supply, while both low and high Mg levels increased soluble sugars, with low Mg levels specifically enhancing the sucrose content, which is a critical energy reserve in plants. (3) CAT exerted a pivotal regulatory role in the sugar accumulation in maize kernels. GA, under the influence of Ca, modulated the sucrose and soluble sugar contents by inhibiting CAT, whereas ABA, under the influence of Mg, promoted CAT activity, thereby affecting the kernel sugar content. This study reveals a new mechanism through which the addition of Ca and Mg regulate the sugar content in maize kernels by affecting endogenous hormones and antioxidant enzyme activities. These findings not only enhance our understanding of the role of micronutrients in plant growth and development but also provide new strategies for improving crop yield and stress tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijms26010200 | DOI Listing |
Neurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFEur J Pediatr
January 2025
Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
Purpose: The first 1000 days of life are critical for long-term health outcomes, and there is increasing concern about the suitability of commercial food products for infants, toddlers, and children. This study evaluates the compliance of UK commercial baby food products with WHO Nutrient and Promotion Profile Model (NPPM) guidelines.
Methods: Between February and April 2023, data on 469 baby food products marketed for infants and children under 36 months were collected from the online platforms of four major UK supermarkets.
Nutrients
December 2024
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFFoods
January 2025
Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain.
This study aimed to investigate the nutritional value and potential for herbal tea production of two species . The analysis includes the quantification of lipids, proteins, organic acids (HPLC-MS), sugars (HPLC-MS), phenolic compounds (HPLC-MS-MS), volatile compounds (GC-MS), fatty acids (GC-MS), amino acids (HPLC-MS-MS), some minerals (ICP-MS), total phenolic content, and antioxidant activities of flowers (EBF) and thorns (EBT), as well as flowers (EPF) and thorns (EPT). The results indicate that EPF and EPT exhibit elevated levels of protein (11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!