Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts.

Materials (Basel)

Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.

Published: December 2024

AI Article Synopsis

  • The study explores using electrodeposited copper (Cu) and tin (Sn) in electrocatalysts to efficiently reduce atmospheric CO and produce valuable products while integrating with renewable energy.
  • The research focuses on different configurations of Cu and Sn, finding that a catalyst with Sn over a thin layer of Cu performs best, demonstrating promising durability in initial tests.
  • Optimized Sn and Cu-based catalysts yield over 60% organic products, mainly CO, at low energy costs (under 3 V), highlighting the process's economic viability.

Article Abstract

Electrochemical reduction of CO is an efficient and novel strategy to reduce the amount of this greenhouse-effect pollutant gas in the atmosphere while synthesizing value-added products, all of it with an easy synergy with intermittent renewable energies. This study investigates the influence of different ways of combining electrodeposited Cu and Sn as metallic elements in the electrocatalyst. From there, the use of Sn alone or with a small amount of Cu beneath is investigated, and finally, the best catalyst obtained, which has Sn over a slight Cu layer, is evaluated in consecutive cycles to make an initial exploration of the catalyst durability. As a result of this work, after optimization of the Sn and Cu-based catalysts, it is possible to obtain more than 60% of the organic products of interest, predominantly CO, the main component of syngas. Finally, this great amount of CO is obtained under low cell potential (below 3 V), which is a remarkable result in terms of the cost of the process.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma18010105DOI Listing

Publication Analysis

Top Keywords

syngas production
4
production improvement
4
improvement co2rr
4
co2rr cu-sn
4
cu-sn electrodeposited
4
electrodeposited catalysts
4
catalysts electrochemical
4
electrochemical reduction
4
reduction efficient
4
efficient novel
4

Similar Publications

Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts.

Materials (Basel)

December 2024

Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.

Article Synopsis
  • The study explores using electrodeposited copper (Cu) and tin (Sn) in electrocatalysts to efficiently reduce atmospheric CO and produce valuable products while integrating with renewable energy.
  • The research focuses on different configurations of Cu and Sn, finding that a catalyst with Sn over a thin layer of Cu performs best, demonstrating promising durability in initial tests.
  • Optimized Sn and Cu-based catalysts yield over 60% organic products, mainly CO, at low energy costs (under 3 V), highlighting the process's economic viability.
View Article and Find Full Text PDF

Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques.

Molecules

December 2024

Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil.

This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand.

View Article and Find Full Text PDF

Acetogenesis to ethanologenesis: facilitating NADH oxidation via reductive acetate uptake.

Trends Biotechnol

January 2025

School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. Electronic address:

(Homo)acetogens, including Clostridium spp., represent an enigma in metabolic flexibility and diversity. Eubacterium callanderi KIST612 is an acetogen that produces n-butyrate with carbon monoxide (CO) as the carbon and energy source; however, the production route is unknown.

View Article and Find Full Text PDF

Sequential catalysis enables efficient pyrolysis of food waste for syngas production.

Bioresour Technol

January 2025

Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong. Electronic address:

Thermochemical conversion technologies are emerging as one of the most promising approaches to tackle food waste crisis. However, the existing techniques confront significant challenges in terms of syngas selectivity and catalyst stability. This study introduced a cost-effective Joule heating approach utilizing sequential catalysts composed of treated stainless steel (SS) and biochar to optimize syngas production from food waste.

View Article and Find Full Text PDF

Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!