Titanium alloys, particularly Ti-6Al-4V, are widely used in many industries due to their high strength, low density, and corrosion resistance. However, machining these materials is challenging due to high strength at elevated temperatures, low thermal conductivity, and high chemical reactivity. This study investigates Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) to analyze tool wear during the finish turning of Ti-6Al-4V. The tests were conducted under Minimum Quantity Lubrication (MQL). Three inserts (two coated, one uncoated) were tested, and tool life was evaluated based on material removal volume. The issue of tool exploitation and process reliability is crucial, as it directly impacts machining performance. Results show that the uncoated insert outperformed the coated ones. RQA parameters indicated a stable-to-unstable transition in coated inserts but not in the uncoated insert. This suggests that recurrence analysis can monitor cutting dynamics in coated insert machining, but further research is needed for uncoated tools. This paper's novelty lies in applying RP and RQA to diagnose tool wear in titanium alloy machining under MQL conditions, a method not previously explored in this context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721966PMC
http://dx.doi.org/10.3390/ma18010079DOI Listing

Publication Analysis

Top Keywords

tool wear
12
wear finish
8
finish turning
8
titanium alloy
8
minimum quantity
8
quantity lubrication
8
recurrence quantification
8
quantification analysis
8
high strength
8
uncoated insert
8

Similar Publications

Hardfacing is a welding-related technique aimed at depositing a harder and tougher layer onto a softer, less wear-resistant substrate or base metal. This process enhances the abrasion resistance of the component, increasing its durability under working conditions. A key feature of hardfacing is dilution, which refers to the mixing of the hardfacing layer and the base metal.

View Article and Find Full Text PDF

The study aimed to validate the diagnostic system proposed by the Standardized Tool for the Assessment of Bruxism (STAB) by correlating the results obtained based on questionnaire and non-instrumental and instrumental tools. The study had three stages (questionnaire, clinical examination, and electromyographic study). The subjects completed a questionnaire and clinical exam.

View Article and Find Full Text PDF

To address the challenge of accurately capturing tool wear states in small sample scenarios, this paper proposes a tool wear prediction method that combines XGBoost feature selection with a PSO-BP network. In order to solve the problem of input feature selection and parameter selection in BP neural network, a double-layer programming model of input feature and parameter selection is established, which is solved by XGBoost and PSO. Initially, vibration and cutting force signals from CNC machining are preprocessed using time-domain segmentation, Hampel filtering, and wavelet denoising.

View Article and Find Full Text PDF

Burnout of healthcare workers is of increasing concern as workload pressures mount. Burnout is usually conceptualised as resulting from external pressures rather than internal resilience and although is not a diagnosable condition, it is related to help seeking for its psychological sequelae. To understand how staff support services can intervene with staff heading for burnout, it is important to understand what other intrapsychic factors are related to it.

View Article and Find Full Text PDF

This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!