This paper presents a comparative analysis of the energy efficiency of screw drive and linear drive CNC machine tools in turning operations. Two CNC lathes were investigated, one equipped with screw drives and the other with linear drives, during the turning of specially prepared parts. The research examines active and reactive energy consumption, offering insights into the energy efficiency of different drive technologies. The analysis indicates that lathes with linear drives exhibited a higher reactive power consumption (8 kVar) during idle operation in comparison to those with screw drives (1.2 kVar). However, both drive systems demonstrated comparable potential for reducing reactive power consumption through implementing compensation techniques, with a reduction in reactive power consumption of nearly 70%. For both drive systems, the reduction in power use with compensation was at the level of 23-30% for screw drives and 36-47% for linear drives. The study highlights the importance of considering both active and reactive energy in evaluating the energy efficiency of machine tools. The findings contribute to a deeper understanding of energy consumption in turning processes, aiding in the selection and optimization of drive systems for improved sustainability in manufacturing. Future research should explore tool wear impacts, machine-specific energy optimization, and AI-driven solutions for real-time energy management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721205PMC
http://dx.doi.org/10.3390/ma18010075DOI Listing

Publication Analysis

Top Keywords

energy efficiency
16
machine tools
12
screw drives
12
linear drives
12
reactive power
12
power consumption
12
drive systems
12
energy
9
comparative analysis
8
drive
8

Similar Publications

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

Novel Co-Polyamides Containing Pendant Phenyl/Pyridinyl Groups with Potential Application in Water Desalination Processes.

Polymers (Basel)

January 2025

Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile.

This study explores the development and evaluation of a novel series of aromatic co-polyamides featuring diverse pendant groups, including phenyl and pyridinyl derivatives, designed for water desalination membrane applications. These co-polyamides, synthesized with a combination of hexafluoroisopropyl, oxyether, phenyl, and amide groups, exhibited excellent solubility in polar aprotic solvents, thermal stability exceeding 350 °C, and the ability to form robust, flexible films. Membranes prepared via phase inversion demonstrated variable water permeability and NaCl rejection rates, significantly influenced by the pendant group chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!