This article presents a new parametric method for shaping flat transverse frame structural systems supporting thin-walled roofs made of flat sheets folded unidirectionally and transformed elastically to various shell forms. The parameterization was limited to one independent variable, that is the stiffness of the support joints. For different discrete values of simulated stiffness, the surface areas of the cross sections of the tensile and compressed elements and the section modulus of the bending elements were calculated so as to obtain the optimized work of the frame and its elements in the assumed load environment. The developed method allows for optimizing the work of frames considered as flat bar structural systems of building halls, taking into account the ultimate and serviceability limit states. The operation of the method is illustrated with an example concerning the formation of a flat frame working under a load characteristic for buildings located in a lowland area in a moderate climate. The authors intend to successively extend the method with new types of frame systems so as to obtain increasingly accurate and universal models defined by means of an increasing number of independent variables. These parameters are related to different forms and inclinations of columns and girders, and different external load types. The successive increase in the parameters defining the computational parametric model of the frame requires the use of increasingly advanced artificial intelligence algorithms to describe the static and strength performance of the buildings shaped, which makes the proposed method universal and the created structural systems effective in various external environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18010067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!