The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy. The solid remaining after the isolation of extractive compounds was also utilized as a natural filler in PUR foams. The effects of replacing commercial polyols with bio-polyols on the foam rising rate and their mechanical properties, morphology, thermal conductivity, and thermal degradation characteristics were examined. The oxypropylated extractive-based PUR compositions demonstrated the most favorable balance between the biomass content and material properties. At an apparent density of 40 kg/m, the compressive strength of the produced foams was enhanced by 1.4-1.5 times, while the maximum thermal degradation rate in air decreased by 3.8-6.5 times compared to reference materials without adversely affecting the foam morphology. The composition based on liquefied extractives showed lower performance but still improved properties relative to the reference foams. Introducing 3.7-14% of extracted bark into the foam compositions increased the biomass content to 22-24%, although this led to a decrease in the compressive strength and thermal stability. It was shown that partially substituting fossil-derived components with renewable bark biomass in the composition of PUR foams allows for materials with characteristics similar or better to petrochemical-based materials to be obtained. Therefore, the results presented can be considered a contribution to addressing environmental problems and promoting the development of a sustainable economy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18010050 | DOI Listing |
Materials (Basel)
December 2024
Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia.
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Center of Engineering, Federal University of Pelotas, Pelotas 96010-610, Brazil.
This study investigates the sustainable use of spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
Paper-based packaging materials have gained attention from academia and industry for their outstanding environmental sustainability advantages. However, they still encounter major challenges, such as low mechanical strength and inadequate functionality, hindering the replacement of unsustainable packaging materials. Inspired by the remarkable strength of trees provided by cellulose fibers and the water and heat protection of trees provided by bark, this study developed a new biomass-based packaging material (SNC-C) that combines strength, thermal insulation, and water resistance.
View Article and Find Full Text PDFMolecules
December 2024
Postgraduate Program in Amazonian Natural Resources Engineering, Federal University of Pará, Rua Augusto Correa, 01, Belém 66075-110, Brazil.
The widespread use of antibiotics such as fluoroquinolones (FQs) has raised environmental and health concerns. This study is innovative as we investigate the removal of ciprofloxacin (CIP) and norfloxacin (NOR) from water using activated carbon derived from cupuaçu bark (CAC). This previously discarded biomass is now a low-cost raw material for the production of activated carbon, boosting the local economy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composites. To achieve this aim, WBF was extracted using a conventional process, to ensure its purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!