The influence of different pore sizes on the compressive strength and elastic modulus of recycled concrete is an important issue in the academic circle. Aiming at this problem, a quantitative characterization model of the compressive strength and elastic modulus of recycled concrete based on pore grading was established in this paper. The compressive strength, elastic modulus, porosity and distribution of pore size of recycled concrete were measured by a concrete test and nuclear magnetic resonance technology, and the influences of different pore sizes on the compressive strength and elastic modulus of recycled concrete were analyzed, and the rationality of the quantitative characterization model was verified. The results showed that the compressive strength and elastic modulus of recycled concrete decreased with the increase in the recycled coarse aggregate replacement rate, and the decrease was more obvious with the increase in the substitution rate. The peak pore diameter in the distribution curve of porosity and pore diameter of recycled concrete increased, and the proportion of pore diameter above 50~200 nm and 200 nm also increased. The pore sizes, including those below 20 nm and 20~50 nm, had a positive correlation with the compressive strength and elastic modulus of recycled concrete, while the pore sizes, including those above 50~200 nm and 200 nm, had a negative correlation with the compressive strength and elastic modulus of recycled concrete. The test results of recycled concrete verify that the quantitative characterization model could better characterize the compressive strength and elastic modulus of recycled concrete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma18010003 | DOI Listing |
Materials (Basel)
December 2024
Institute of Turbomachinery, Lodz University of Technology, Zeromskiego 116 Str., 90-924 Lodz, Poland.
The application of recycled concrete aggregates (RCAs) has become increasingly popular for different types of structures, as presented in several studies. However, depending on the type of structure and the region, RCAs might have different properties. This study aims to investigate the application of RCAs of different origins for substructure layers of the cycle paths located in Central Europe, which was not analysed previously.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Architecture and Engineering, Xinyu University, Xinyu 338004, China.
The influence of different pore sizes on the compressive strength and elastic modulus of recycled concrete is an important issue in the academic circle. Aiming at this problem, a quantitative characterization model of the compressive strength and elastic modulus of recycled concrete based on pore grading was established in this paper. The compressive strength, elastic modulus, porosity and distribution of pore size of recycled concrete were measured by a concrete test and nuclear magnetic resonance technology, and the influences of different pore sizes on the compressive strength and elastic modulus of recycled concrete were analyzed, and the rationality of the quantitative characterization model was verified.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Catalysis & Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Telangana State 500007, India.
Photoassisted CO reduction employing a metal-free system is both challenging and fascinating. In our study, we present a structural engineering strategy to tune the potential energy barrier, which, in turn, affects the photoreduction ability. A series of porphyrin-based porous organic polymers () were hydrothermally synthesized and the influence of keto-enol tautomerization on the CO photoreduction potential has been rigorously investigated.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China.
Given the current construction waste accumulation problem, to utilize the resource of red brick solid waste, construction waste red brick was used as a concrete coarse aggregate combined with polypropylene fiber to prepare PPF (polypropylene fiber)-reinforced recycled brick aggregate concrete. Through a cube compression test, axial compression test, and four-point bending test of 15 groups of specimens, the influences of the aggregate replacement rate of recycled brick and the PPF volume on the mechanical properties of recycled brick aggregate concrete reinforced by PPF were studied, and a strength parameter calculation formula was constructed and modified based on the above. Finally, combined with a life cycle assessment (LCA), the carbon emissions of raw materials were analyzed and evaluated.
View Article and Find Full Text PDFMolecules
December 2024
School of Civil Engineering, Putian University, Putian 351100, China.
Herein, the study explores a composite modification approach to enhance the use of recycled concrete aggregate (RCA) in sustainable construction by combining accelerated carbonation (AC) and nano-silica immersion (NS). RCA, a major source of construction waste, faces challenges in achieving comparable properties to virgin aggregates. Nano-silica, a potent pozzolan, is added to fill micro-cracks and voids in RCA, improving its bonding and strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!