Controlled Tensile Behavior of Pre-Cured PDMS via Advanced Bonding Techniques.

Polymers (Basel)

Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Published: January 2025

Polydimethylsiloxane (PDMS) is extensively employed in applications ranging from flexible electronics to microfluidics due to its elasticity, transparency, and biocompatibility. However, enhancing interfacial adhesion and tensile properties remains a challenge for applications demanding high mechanical stability. To this end, this study introduced a novel bonding technique using crosslinkers as adhesive layers to improve the mechanical performance of PDMS. By adjusting the crosslink density at the PDMS-PDMS interfaces, we achieved substantial improvements in tensile properties and interfacial adhesion. Our findings revealed that, under specific conditions, a particular mixing ratio significantly enhances the elastic modulus and interfacial stability. Notably, the elastic modulus of PDMS with a tailored crosslink density increased by approximately 760% compared to that achieved with a simple bonding method. This study demonstrated an effective strategy for tailoring the interfacial properties of PDMS by adjusting the crosslink density, offering a pathway to enhance material design for applications requiring advanced mechanical performance and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723294PMC
http://dx.doi.org/10.3390/polym17010103DOI Listing

Publication Analysis

Top Keywords

crosslink density
12
interfacial adhesion
8
tensile properties
8
mechanical performance
8
pdms adjusting
8
adjusting crosslink
8
elastic modulus
8
pdms
5
controlled tensile
4
tensile behavior
4

Similar Publications

This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.

View Article and Find Full Text PDF

Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development.

Polymers (Basel)

January 2025

Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.

View Article and Find Full Text PDF

: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.

View Article and Find Full Text PDF

High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part at the same time. Some of the lamellae that extend radially to form the spherulite structure were missing during the 30-day degradation.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!