AI Article Synopsis

  • Millions of tonnes of plastic and glass waste accumulate globally, predominantly ending up in landfills, highlighting the need for better recycling methods.
  • This study explores using recycled glass fines incorporated in a high-density polyethylene (HDPE) matrix, conducting laboratory tests to optimize manufacturing conditions and composite design.
  • The research identifies an ideal formulation that enhances the mechanical properties of the composites, showing significant improvements in strength due to strong hydrogen bonding, paving the way for sustainable use of waste materials in structural applications.

Article Abstract

Millions of tonnes of plastic and glass waste are generated worldwide, with only a marginal amount fed back into recycling with the majority ending at landfills and stockpiles. Excessive waste production calls for additional recycling pathways. The technology being investigated in this study is based on recycled glass fines encapsulated in a high-density polyethylene (HDPE) matrix. Laboratory tests are performed on specimens at different manufacturing conditions using compression moulding, determining an optimised manufacturing method. The performance of composites prepared under different formulations is tested to identify an optimised mix design by means of statistical analysis. At this optimum ratio, flexural, tensile, and compressive strengths of 33.3 MPa, 19.6 MPa, and 12.8 MPa, are, respectively, recorded. Upon identifying the optimum dosage levels, the potential for employing HDPE from diverse origins are investigated. The microstructure, pore structure, and chemistry of optimised composite specimens are analysed to interpret the composite performance. The effective stress transfer in the composite is attributed to strong hydrogen bonds created by maleic anhydride leading to 37.6% and 8.5% improvements in compressive and flexural strengths, respectively. These research findings can facilitate the pathway for utilising plastic and glass waste in landfills/stockpiles for sustainable polymeric composites towards structural applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym17010035DOI Listing

Publication Analysis

Top Keywords

plastic glass
8
glass waste
8
waste-derived high-density
4
high-density polyethylene-glass
4
polyethylene-glass composites
4
composites pathway
4
pathway sustainable
4
sustainable structural
4
structural materials
4
materials millions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!