Thermoplastic polyurethanes (TPUs) are suited for fused deposition modeling (FDM) of parts that require high levels of flexibility and strength. Predicting the deformation of TPU parts produced using FDM may be difficult, especially under large deformations, as their constitutive models depend on the printing process parameters. The lack of understanding led to the absence of constitutive models for TPU parts produced using FDM. This work aims to identify accurate hyperelastic constitutive models. Six groups of uniaxial tensile specimens were produced using FDM. These groups were made with variations in two process parameters, which were infill geometry and extrusion nozzle temperature. Infill geometries either corresponded to a zero-deposition angle (wall-only) or an infill deposition of ±45° raster angle (infill-only). It was determined that a third-order Mooney-Rivlin constitutive model can accurately describe these six groups. A finite element analysis (FEA) of the experiments using the proposed constitutive models resulted in limited errors for all groups. The proposed approach was verified through a combination of experiments and FEA of FDM TPU components undergoing large deformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17010026 | DOI Listing |
Sensors (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process MOE, Southwest University of Science and Technology, Mianyang 621010, China.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA.
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China.
Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Frontier Science Center of Mechanoinformatics, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China.
In this study, a probabilistic model within the dislotwin constitutive framework of DAMASK (the Düsseldorf Advanced Material Simulation Kit) was established to describe the cyclic loading behaviors of AZ31B magnesium alloys. Considering the detwinning procedure within the twinned region, this newly developed dislocation-twinning-detwinning model was employed to accurately simulate stress-strain behaviors of AZ31B magnesium alloys throughout tension-compression-tension (T-C-T) cycle loading. The investigations revealed that the reduction in yield stress during the reverse loading process was attributed to the active operation of twinning and detwinning modes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!