Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces. Thus, the aim of this study was to develop a surface coating that has both good antibacterial ability and a high affinity toward silicone substrates. To achieve high affinity, a pre-coating layer with abundant surface vinyl groups, named SI-vinyl, was prepared on the silicone substrate by moisture curing using a mixture of α,ω-dihydroxy polydimethylsiloxane and vinyltrimethoxysilane as the painting agent. To endow the surface with contact-killing ability, a series of polyurethanes with different contents of quaternary ammonium salt groups in their main chain and two vinyl end groups were synthesized and covalently grafted onto the surface of SI-vinyl, resulting in corresponding bactericidal coatings with different surface contents of quaternary ammonium salt groups (SI-QAS). Of these bactericidal coatings, SI-QAS-2, with a surface QAS content of 2.1 × 10 N cm, was selected as the best coating based on the consideration of stability, compatibility, and antibacterial ability. The SI-QAS-2 coating demonstrated high contact-killing performance, rapidly inactivating 72.8%, 99.9%, and 98.9% of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 30 min. Furthermore, even after being exposed to a high concentration of bacteria (10 CFU/mL) for 4 days, the SI-QAS-2 coating still maintained a high bactericidal ratio of over 80%. In summary, we developed a novel contact-killing coating that reduces the risk of bacterial infections caused by catheter implantation, demonstrating that it has high affinity toward silicone substrates, excellent contact-killing efficiency, a facile preparation method, and potential for further application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/polym17010017 | DOI Listing |
Sensors (Basel)
December 2024
Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshuixidao, Tianjin 300384, China.
Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.
View Article and Find Full Text PDFMolecules
January 2025
Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland.
Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against and bacteria.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; School of Pharmacy, University of Jordan, Amman 11942, Jordan.
Unlabelled: The study investigated the resistome, virulome and mobilome of multidrug resistant (MDR) Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates.
Methods: A total of 46 suspected Klebsiella species (spp.) were collected from blood cultures within the uMgungundlovu District in the KwaZulu-Natal Province.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!