Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings. The findings suggest that most wheat genotypes exhibited a significant reduction in germination and growth traits under severe drought, while the genotype Srpanjka exhibited less reduction under both drought conditions. Out of 668 metabolic features, 54 were altered under 10% PEG stress and 140 under 20% PEG stress, with 48 commonly shared between these two stress intensities. This study demonstrated that the metabolic response of shoots to 10% PEG stress contrasts with that of 20% PEG stress. Some growth metabolites, such as oxalic acid, sophorose, and turanose, showed the highest positive increase under both stresses, while butanoic acid, tropic acid, glycine, propionic acid, and phosphonoacetic acid decreased. It is suggested that the accumulation of amino acids, such as proline, contributed to the drought tolerance of the plants. Among all organic acids, succinic and aspartic acids particularly increased the plant response to mild and severe drought stress, respectively. Our results suggest that different metabolites in wheat seedlings enhance the potential ability of wheat to cope with drought stress in the early growth stages by activating a rapid and comprehensive tolerance mechanism. This discovery presents a new approach for enhancing wheat tolerance to abiotic stress, including water deficit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/plants14010010 | DOI Listing |
Plants (Basel)
December 2024
College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia.
Polyethylene glycol (PEG), especially at high molecular weights, is highly soluble in water, and these solutions have reduced water potential. It is convenient to use PEG in hydroponics (liquid nutrient solution) for experiments with plants. However, some authors have been found to describe the application of PEG to plants incorrectly, such as drought, dehydration, osmotic, or water stresses, which can mislead readers.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), OT Gatersleben, Corrensstraße 3, 06466 Seeland, Germany.
Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Nanjing Agricultural University, Nanjing, 211800, China.
Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.
View Article and Find Full Text PDFSmall
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!