More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products. It selectively sensitizes tumor cells to radiation while protecting normal cells from radiation-induced damage, thus improving the efficacy of radiotherapy and consequent therapeutic outcomes while reducing adverse effects. Genistein protects normal cells by its potent antioxidant effect that reduces oxidative stress and mitigates radiation-induced apoptosis and inflammation. Conversely, genistein increases the radiosensitivity of tumor cells through specific mechanisms such as the inhibition of DNA repair, the arrest of the cell cycle in the G/M phase, the generation of reactive oxygen species (ROS), and the modulation of apoptosis. These effects increase the cytotoxicity of radiation. Preclinical studies demonstrated genistein efficacy in various cancer models, such as breast, prostate, and lung cancer. Despite limited clinical studies, the existing evidence supports the potential of genistein in improving the therapeutic effect of radiotherapy. Future research should focus on dosage optimization and administration, the exploration of combination therapies, and long-term clinical trials to establish genistein benefits in clinical settings. Hence, the unique ability of genistein to improve the radiosensitivity of tumor cells while protecting normal cells could be a promising strategy to improve the efficacy and safety of radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723059PMC
http://dx.doi.org/10.3390/molecules30010188DOI Listing

Publication Analysis

Top Keywords

normal cells
20
tumor cells
12
genistein
8
cells
8
preclinical studies
8
effects genistein
8
protecting normal
8
radiosensitivity tumor
8
radiotherapy
5
normal
5

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Profiling Exosomal Metabolomics as a Means for Diagnosis and Researching Early-Stage Hypertensive Nephropathy.

Br J Hosp Med (Lond)

January 2025

Department of Cardiology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, Sichuan, China.

Hypertension (HT) is a prevalent medical condition showing an increasing incidence rate in various populations over recent years. Long-term hypertension increases the risk of the occurrence of hypertensive nephropathy (HTN), which is also a health-threatening disorder. Given that very little is known about the pathogenesis of HTN, this study was designed to identify disease biomarkers, which enable early diagnosis of the disease, through the utilization of high-throughput untargeted metabolomics strategies.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!