This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand. However, their versatility has also contributed to a massive global waste problem as plastics pervade virtually every ecosystem, from the depths of oceans to the most remote terrestrial landscapes. Plastic pollution manifests not just as visible waste-such as fishing nets, bottles, and garbage bags-but also as microplastics, infiltrating food chains and freshwater sources. This crisis is exacerbated by the unsustainable linear model of plastic production and consumption, which prioritizes convenience over long-term environmental health. The mismanagement of plastic waste not only pollutes ecosystems but also releases greenhouse gases like carbon dioxide during degradation and incineration, thereby complicating efforts to achieve global climate and sustainability goals. Given that mechanical recycling only addresses a fraction of macroplastics, innovative approaches are needed to improve this process. Methods like pyrolysis and hydrogenolysis offer promising solutions by enabling the chemical transformation and depolymerization of plastics into reusable materials or valuable chemical feedstocks. These advanced recycling methods can support a circular economy by reducing waste and creating high-value products. In this article, the focus on pyrolysis and hydrogenolysis underscores the need to move beyond traditional recycling. These methods exemplify the potential for science and technology to mitigate plastic pollution while aligning with sustainability objectives. Recent advances in the pyrolysis and hydrogenolysis of polyolefins focus on their potential for advanced recycling, breaking down plastics at a molecular level to create feedstocks for new products or fuels. Pyrolysis produces pyrolysis oil and syngas, with applications in renewable energy and chemicals. However, some challenges of this process include scalability, feedstock variety, and standardization, as well as environmental concerns about emissions. Companies like Shell and ExxonMobil are investing heavily to overcome these barriers and improve recycling efficiencies. By leveraging these transformative strategies, we can reimagine the lifecycle of plastics and address one of the most pressing environmental challenges of our time. This review updates the knowledge of the fields of pyrolysis and hydrogenolysis of plastics derived from polyolefins based on the most recent works available in the literature, highlighting the techniques used, the types of products obtained, and the highest yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules30010087 | DOI Listing |
Molecules
December 2024
Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil.
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand.
View Article and Find Full Text PDFChemSusChem
November 2024
Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
Polyester waste in the environment threatens public health and environmental ecosystems. Chemical recycling of polyester waste offers a dual solution to ensure resource sustainability and ecological restoration. This minireview highlights the traditional recycling methods and novel recycling strategies of polyester plastics.
View Article and Find Full Text PDFSci Total Environ
June 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
Carbonaceous materials catalyze reductive dechlorination of chlorinated ethylenes (CEs) by iron(II) materials providing a new approach for the remediation of CE polluted groundwater. While most CEs are reduced via β-elimination, vinyl chloride (VC), the most toxic and recalcitrant CE, degrades by hydrogenolysis. The significance of carbon catalysts for reduction of VC is well documented for iron(0) systems, but hardly investigated with iron(II) materials as reductants.
View Article and Find Full Text PDFJACS Au
December 2023
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis.
View Article and Find Full Text PDFJ Am Chem Soc
July 2023
Department of Chemistry, Tsinghua University, Beijing 100084, China.
Recycling waste plastics requires the degradation of plastics into small molecules. However, various products are widely distributed using traditional methods of depolymerizing polystyrene (PS) such as catalytic pyrolysis and hydrogenolysis. Here, we creatively report a N-bridged Co, Ni dual-atom (Co-N-Ni) catalyst for the targeted conversion of waste PS plastics to ethylbenzene via a pressurized tandem fixed-bed reactor where hydropyrolysis is coupled with downstream vapor-phase hydrotreatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!