Nanobubbles Adsorption and Its Role in Enhancing Fine Argentite Flotation.

Molecules

School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

Published: December 2024

The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration. Furthermore, the NBs formed a thin film on the argentite surface, which decreased the adsorption of sodium diethyldithiocarbamate. Microflotation tests confirmed that the introduction of NBs considerably enhanced the recovery of argentite using flotation technology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules30010079DOI Listing

Publication Analysis

Top Keywords

fine argentite
16
argentite flotation
12
argentite surface
12
role enhancing
8
enhancing fine
8
argentite
8
nanobubbles adsorption
4
adsorption role
4
fine
4
flotation
4

Similar Publications

The efficient recovery of fine argentite from polymetallic lead-zinc (Pb-Zn) sulfide ore is challenging. This study investigated nanobubble (NB) adsorption on the argentite surface and its role in enhancing fine argentite flotation using various analytical techniques, including contact angle measurements, adsorption capacity analysis, infrared spectroscopy, zeta potential measurements, turbidity tests, microscopic imaging, scanning electron microscopy, and flotation experiments. Results indicated that the NBs exhibited long-term stability and were adsorbed onto the argentite surface, thereby enhancing surface hydrophobicity, reducing electrostatic repulsion between fine argentite particles, and promoting particle agglomeration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!