Metal-organic framework (MOF)-derived transition metal compounds and their composites have attracted great interest for applications in energy conversion and storage. In this work, hexagonal micro-prisms of Ni-doped CoTiO composited with amorphous carbon (NiCTO/C) were synthesized using Ti-Co-based MOFs as precursors. The experimental results indicate the substitutional doping of Ni for Co in CoTiO (CTO), leading to improved conductivity, as further confirmed by density functional theory calculations. Thus, the carbon-free sample of Ni-doped CTO exhibits improved lithium storage properties compared to the pristine one. Furthermore, when coupled with in situ-formed carbon, the dually modified NiCTO/C micro-prisms demonstrated a significantly increased reversible capacity of 584.8 mA h g, excellent rate capability, and superior cycling stability at a high current density of 500 mA g. This enhanced electrochemical performance can be attributed to the synergistic effect of Ni doping and carbon coating.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules30010034DOI Listing

Publication Analysis

Top Keywords

engineering metal-organic
4
metal-organic framework-derived
4
framework-derived cotio
4
cotio micro-prisms
4
micro-prisms lithium-ion
4
lithium-ion batteries
4
batteries metal-organic
4
metal-organic framework
4
framework mof-derived
4
mof-derived transition
4

Similar Publications

Debus-Radziszewski Reaction Inspired In Situ "One-Pot" Approach to Construct Luminescent Zirconium-Organic Frameworks.

Inorg Chem

January 2025

Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.

Metal-organic frameworks have received extensive development in the past three decades, which are generally constructed via the reaction between inorganic building units and commercially available or presynthesized organic linkers. However, the presynthesis of organic linkers is usually time-consuming and unsustainable due to multiple-step separation and purification. Therefore, methodology development of a new strategy is fundamentally important for the construction and further exploration of the applications of MOFs.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!