Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking. SNPSTR markers combine short tandem repeats with single nucleotide polymorphisms within an amplicon to increase discriminatory power. Within the FOGS (Forensic Genetics for Species Protection) project, we have established SNPSTR marker sets for 74 vertebrate species. On average, each set consists of 19 SNPSTR markers with 82 SNPs per set. More than 1300 SNPSTR markers and over 300 STR markers were identified. Also, through its biobanking pipeline, the FOGS project enabled the cryopreservation of somatic cells from 91 vertebrate species as well as viable tissues for later cell initiation from a further 109 species, providing future strategies for ex situ conservation. In addition, many more fixed tissues and DNA samples of endangered species were biobanked. Therefore, FOGS was an interdisciplinary study, combining molecular wildlife forensics and conservation tools. The SNPSTR sets and cell culture information are accessible through the FOGS database (https://fogs-portal.de/data) that is open to scientists, researchers, breeders and authorities worldwide to protect wildlife from illegal trade.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.14062DOI Listing

Publication Analysis

Top Keywords

snpstr markers
12
snpstr marker
8
wildlife trafficking
8
cell culture
8
vertebrate species
8
species
6
fogs
5
wildlife
5
snpstr
5
fogs snpstr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!