Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance. This article proposes advanced material and fabrication optimization for stretchable TED with a three-dimensional structure, achieving enhanced performance through the stacked integration of multilayer thermoelectric unit networks. Techniques such as laser ablation are employed to create thermal vias, significantly improving interlayer thermal exchange efficiency. The resulting device can achieve 30% stretching and provides a stable and long-term 10 °C skin cooling under normal arm movement. Additionally, by integrating temperature sensing and control circuits, the fabricated wearable closed-loop system can programmatically regulate skin temperature, suitable for virtual temperature and pain sensation. The 3D integration method and thermal via construction technique proposed in this article can also be applied to other high-power stretchable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c16648DOI Listing

Publication Analysis

Top Keywords

stretchable thermoelectric
8
stretchable electronics
8
skin temperature
8
stretchable
5
thermal
5
three-dimensional stacked
4
stacked stretchable
4
thermoelectric device
4
device virtual
4
virtual sensation
4

Similar Publications

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance.

View Article and Find Full Text PDF

By analyzing facial features to perform expression recognition and health monitoring, facial perception plays a pivotal role in noninvasive, real-time disease diagnosis and prevention. Current perception routes are limited by structural complexity and the necessity of a power supply, making timely and accurate monitoring difficult. Herein, a self-powered poly(vinyl alcohol)-gellan gum-glycerol thermogalvanic gel patch enabling facial perception is developed for monitoring emotions and atypical pathological states.

View Article and Find Full Text PDF

A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.

Research (Wash D C)

November 2024

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, China.

Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!