The importance of gravity for human motor control is well established, but it remains unclear how the central nervous system accounts for gravitational changes to perform complex motor skills. We tested the hypothesis that microgravity and hypergravity have distinct effects on the neuromuscular control of reaching movements compared to normogravity. To test the influence of gravity levels on sensorimotor planning and control, participants (n = 9) had to reach toward visual targets during parabolic flights. Whole-body kinematics and muscular activity were adjusted in microgravity, allowing arm reaching to be as accurate as in normogravity. However, we observed in hypergravity a systematic undershooting, which likely resulted from a lack of reorganization of muscle activations. While new studies are necessary to clarify whether hypergravity impairs the internal model of limb dynamics, our findings provide new evidence that hypergravity creates a challenge that the human sensorimotor system is unable to solve in the short term.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41526-024-00452-xDOI Listing

Publication Analysis

Top Keywords

human sensorimotor
8
sensorimotor system
8
hypergravity
5
hypergravity challenging
4
challenging microgravity
4
microgravity human
4
system gravity
4
gravity human
4
human motor
4
motor control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!