The Imaging Science Subsystem onboard the Cassini spacecraft recorded numerous high-quality images of Jupiter and Saturn at various wavelengths, from ultraviolet to near-infrared, during its 20-year mission from 1997 to 2017. Using these images, we have developed global maps of Jupiter and Saturn across multiple wavelengths. These maps reveal the global atmospheric structures of Jupiter and Saturn, offering a comprehensive tool to study the physical and dynamic processes of these atmospheric systems on a global scale. Additionally, these multi-wavelength maps, which probe different pressure levels within the atmospheres, help to explore the vertical structure of these processes. Moreover, global maps at different times enable tracking the movement of dynamic phenomena (e.g., clouds, storms, vortices, eddies, waves, and turbulence), thereby enhancing our understanding of atmospheric dynamics on the giant planets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723921PMC
http://dx.doi.org/10.1038/s41597-025-04392-3DOI Listing

Publication Analysis

Top Keywords

jupiter saturn
16
global maps
12
maps jupiter
8
maps
5
multi-wavelength global
4
jupiter
4
saturn
4
saturn cassini
4
cassini imaging
4
imaging system
4

Similar Publications

Tidal Deformation and Dissipation Processes in Icy Worlds.

Space Sci Rev

January 2025

Faculty of Mathematics and Physics, Department of Geophysics, Charles University, V Holesšovičkách 2, Praha, Praha 8 180 00 Czech Republic.

Tidal interactions play a key role in the dynamics and evolution of icy worlds. The intense tectonic activity of Europa and the eruption activity on Enceladus are clear examples of the manifestation of tidal deformation and associated dissipation. While tidal heating has long been recognized as a major driver in the activity of these icy worlds, the mechanism controlling how tidal forces deform the different internal layers and produce heat by tidal friction still remains poorly constrained.

View Article and Find Full Text PDF

Electromagnetic whistler-mode chorus waves are a key driver of variations in energetic electron fluxes in the Earth's magnetosphere through the wave-particle interaction. Traditionally understood as a diffusive process, these interactions account for long-term electron flux variations (> several minutes). However, theories suggest that chorus waves can also cause rapid (< 1 s) electron acceleration and significant flux variations within less than a second through a nonlinear wave-particle interaction.

View Article and Find Full Text PDF

The Imaging Science Subsystem onboard the Cassini spacecraft recorded numerous high-quality images of Jupiter and Saturn at various wavelengths, from ultraviolet to near-infrared, during its 20-year mission from 1997 to 2017. Using these images, we have developed global maps of Jupiter and Saturn across multiple wavelengths. These maps reveal the global atmospheric structures of Jupiter and Saturn, offering a comprehensive tool to study the physical and dynamic processes of these atmospheric systems on a global scale.

View Article and Find Full Text PDF

Metastable Dihydrate of Sodium Chloride at Ambient Pressure.

J Phys Chem Lett

December 2024

AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.

Article Synopsis
  • Sodium chloride (NaCl) is significant across various fields, including geochemistry and food production, and is one of the most prevalent salts in the cosmos.
  • Researchers discovered a new form of NaCl, a metastable dihydrate, created by rapidly freezing a NaCl solution, which transforms into hydrohalite and ice Ih when heated above 190 K.
  • This finding suggests that the presence of this new hydrate on icy celestial bodies, like Jupiter and Saturn's moons, could indicate areas where subsurface brines have recently frozen, highlighting potential targets for future space missions.
View Article and Find Full Text PDF

The drift motion of energetic charged particles can generate an azimuthal electric current around the planet known as the ring current, which regulates the field configuration of the magnetosphere. However, limited coverage of in-situ measurements makes it challenging to investigate the long-term variations of the global ring current. Taking advantage of the energetic neutral atom (ENA) imaging onboard the Cassini mission, we present a nearly 11-year cycle of the suprathermal ring current populations in Saturn's magnetosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!