With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcb.2024.12.004 | DOI Listing |
Clin Trials
January 2025
Rare Diseases Team, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
NEUROFARBA Department, Neurosciences Section, University of Florence, Florence, Italy.
Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.
Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.
Plant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!