BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-β family, BMP-9 and -10 are secreted as a mixture of disulfide-linked dimers and monomers, in which the interchain cysteine (Cys-392) remains either paired or unpaired. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a non-covalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to disulfide-linked dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for infrequent interchain disulfide bond formation, not the cysteinylation. Additionally, we show that interchain disulfide bond formation occurs less in BMP-9 than BMP-10 and these frequencies can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing protomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2025.168935 | DOI Listing |
J Mol Biol
January 2025
Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address:
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:
Pentraxin-3 (PTX3) is a multifunctional pattern-recognition molecule that is essential for immune defense, pathogen recognition, and complement activation. PTX3 is stored as a monomer in neutrophil granules, and assembles into higher-order oligomers upon immune activation, thereby enhancing its antimicrobial function. The mechanism underlying this assembly remains elusive.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany.
Antibody-drug conjugates (ADC) constitute a groundbreaking advancement in the field of targeted therapy. In the widely utilized cysteine conjugation, the cytotoxic payload is attached to reduced interchain disulfides which involves a reduction of the native monoclonal antibody (mAb). This reaction needs to be thoroughly understood and controlled as it influences the critical quality attributes (CQAs) of the final ADC product, such as the drug-to-antibody ratio (DAR) and the drug load distribution (DLD).
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China. Electronic address:
The mechanism of how the coexistence of oat β-glucan (OβG) and tea polyphenols (TP) impacts gluten aggregation properties was investigated. The OβG might form interchain hydrogen bondings and compete for water with gluten, which could increase gluten aggregation and the gluten network's expansion, leading to its increasing average particle size (by 17.23 %) with 5%OβG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!