Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods to explore their nonlinear rheological properties. It was found that the HIPEs showed Type III LOAS response with weak strain overshoot depending on the emulsion parameters and microgel characteristics. The FTC method enabled the extraction of nonlinearity measures at limiting conditions (γ → 0, γ → γ) showing intracycle strain-hardening and intracycle shear thinning of the HIPEs under LOAS. By providing a detailed process of the emulsion microstructure transformation in each oscillation cycle, the SPP analysis showed that the HIPEs underwent a 3-step gradual sequence of physical processes, and magnified the influence of microgel characteristics on the rheology of the HIPEs. Comparing with commercially available traditional and low-fat mayonnaise samples, the h-CSM stabilized HIPEs exhibited higher flow compliance but stronger thixotropic recovery ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139650 | DOI Listing |
Biomedicines
January 2025
Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.
: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. : Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology Freising Germany.
Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:
Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods to explore their nonlinear rheological properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China. Electronic address:
With the increasing demand for healthy diets, low-fat foods have gradually become a hot issue. This study successfully prepared low-internal-phase and high-viscoelastic emulsion gels using the synergistic effect between buckwheat protein microgel (BPM) and carboxylated cellulose nanofibers (CNF). The effects of the ratio of BPM to CNF on the microstructure, stability, rheological properties, and 3D printing characteristics of the emulsion gels were investigated.
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
This study investigates the oral processing characteristics and application of soybean fiber and sodium alginate microgel in enhancing the texture and sensory attributes of low-fat yogurt. By combining soybean fiber with sodium alginate, a stable composite microgel system was developed with a uniform particle-size distribution. Oral lubrication performance was assessed by evaluating particle size, texture, friction coefficient and rheological properties, providing insights into how microgels improve food lubricity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!