Dual heteroatom-doped porous biochar from chitosan/lignosulfonate gels for enhanced removal of tetracycline by persulfate activation: Performance and mechanism.

Int J Biol Macromol

School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:

Published: January 2025

Rational design of carbon material structures is essential for enhancing the performance of persulfate-based advanced oxidation processes (PS-AOPs) in water purification. In this study, a self-doping and self-templating strategy was devised to produce N, S co-doped biochar catalysts through pre-cryocrushing and carbonization procedures employing chitosan (N-source) and lignosulfonate (S-source) derived from biomass waste. The as-synthesized materials exhibited excellent performance in removing tetracycline (TC) through a synergistic process of adsorption and catalytic activation. Mechanistic studies confirmed that electron transfer serves as the primary pathway, while singlet oxygen plays an auxiliary role. Furthermore, the toxicity of the degradation system, the impact of the complex water matrix, and the reusability of the catalysts were thoroughly investigated. Overall, this work is devoted to the treatment and application of biomass waste, which provides a feasible method for synthesizing heteroatom-doped biochar and offers valuable insights into the critical role of heteroatom-doped carbocatalysts in non-radical activation of persulfate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139690DOI Listing

Publication Analysis

Top Keywords

biomass waste
8
dual heteroatom-doped
4
heteroatom-doped porous
4
porous biochar
4
biochar chitosan/lignosulfonate
4
chitosan/lignosulfonate gels
4
gels enhanced
4
enhanced removal
4
removal tetracycline
4
tetracycline persulfate
4

Similar Publications

Artichoke ( L.) is an herbaceous perennial plant from the Mediterranean Basin, cultivated as a poly-annual crop in different countries. Artichoke produces a considerable amount of waste at the end of the harvesting season in the field (5.

View Article and Find Full Text PDF

Development and Characterization of Biodegradable, Binderless Fiberboards from Eggplant Straw Fibers.

Materials (Basel)

December 2024

International Joint Research Center on High-Value Utilization of Agricultural Waste Biomass Between Jiangsu University, China, and Mie University, Japan, Zhenjiang 212013, China.

Currently, wood-based panels are mainly made from wood and adhesives containing formaldehyde. With the growing demand for raw materials and increasing concern for human health, the use of residues from annual crops to manufacture binder-free biodegradable biomass boards has attracted increasing interest. The aim of this study was to develop a biodegradable bio-board without any adhesives using eggplant straw fibers.

View Article and Find Full Text PDF

In Situ Phytoremediation of Mine Tailings with High Concentrations of Cadmium and Lead Using (Sapindaceae).

Plants (Basel)

December 2024

Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.

The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.

View Article and Find Full Text PDF

The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.

View Article and Find Full Text PDF

Co-Hydrothermal Carbonization of Goose Feather and Pine Sawdust: A Promising Strategy for Disposal of Sports Waste and the Robust Improvement of the Supercapacitor Characteristics of Pyrolytic Nanoporous Carbon.

Molecules

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using mixed goose feathers and heavy-metals-contaminated pine sawdust. Comprehensive characterization demonstrated that the prepared M-3-25 (Biochar derived from mixed feedstocks (25 mg/g Cu in pine sawdust) at 700 °C with activator ratios of 3) possesses a high specific surface area 2501.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!