One of the pathological mechanisms of neurodegenerative diseases is that oxidative stress damages neurons. Therefore, reducing reactive oxygen species (ROS) overload may be a promising approach for preventing and treating neurological diseases. Fibroblast growth factor 21 (FGF21) is crucial for protecting and restoring various forms of pathological injury. Consequently, the operating mechanism of FGF21 was investigated. Our research revealed that rhFGF21 could enhance the cell viability by alleviating the damage to PC12 cells after HO action of via mechanisms decreasing mitochondrial apoptosis, reducing ROS production, increasing antioxidant enzyme levels, adenosine triphosphate (ATP) synthesis and mitochondrial membrane potential (MMP). Excessive ROS trigger cell apoptosis. Our findings revealed that tBHP counteracted the cell viability-boosting effect of rhFGF21 in HO-stimulated PC12 cells, whereas N-acetyl-L-cysteine (NAC) enhanced the viability-promoting effect of rhFGF21 in these cells. AKT is crucial in mediating ROS-induced cell apoptosis. The treatment of PC12 cells exposed to HO with rhFGF21 resulted in upregulation of p-AKT expression. Moreover, rhFGF21 inhibited ROS levels and increased the cell viability, which were both reversed by administration of an AKT inhibitor (wortmannin). The research discovered that rhFGF21 mitigated mitochondrial apoptosis in PC12 cells exposed to HO through the functioning of the AKT and ROS signaling axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2025.114417 | DOI Listing |
J Nat Prod
January 2025
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFFoods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFExp Cell Res
January 2025
Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Tissue Cell
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Malignant pheochromocytomas are infrequent tumors that have a poorer prognosis compared to their benign counterparts. The administration of chemotherapy to patients with pheochromocytoma can result in adverse side effects and a reduced life quality. Alternative and more targeted treatment strategies, such as gene therapy significantly improve the patients' survival rate and life expectancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!