Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids.

Stem Cell Reports

Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Published: December 2024

The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components. Here, we implement an alternative, chemically defined, dynamic hydrogel to support the differentiation of human inner ear organoids. Specifically, thiol-norbornene and hydrazide-aldehyde click chemistries are used to fabricate inner ear organoid-laden, gelatin-based scaffolds. We identify optimal formulations to support hair cell development with comparable efficiency and fidelity to Matrigel-cultured organoids. These results suggest that the chemically defined hydrogel may serve as a viable alternative to Matrigel for inner ear tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2024.12.001DOI Listing

Publication Analysis

Top Keywords

inner ear
28
chemically defined
12
human inner
12
ear organoids
12
defined dynamic
8
support hair
8
hair cell
8
differentiation human
8
tissue engineering
8
inner
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!