A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.78 h, pH = 2.63, initial concentration = 15.78 mg/L, temperature = 35.14°C, and adsorbent dosage = 100.71 mg. Characterization results revealed that the main adsorption mechanisms included complexation, π-π interactions, and electrostatic attraction. Kinetic and isotherm model analyses indicated that the adsorption process of γ-FeO/SiO-Mg(OH)@BC adhered to the pseudo-second-order kinetic model and the Freundlich isotherm model, primarily involving multilayer chemical adsorption. The application of this composite material in complex aquatic environments in antimony mining areas demonstrated promising practical results, as well as excellent regeneration performance. This study provides technical and theoretical support for the treatment of complex heavy metal wastewater in antimony mining areas and lays a foundation for the development of novel carbon-magnetic modified nanocomposite adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137129DOI Listing

Publication Analysis

Top Keywords

carbon-magnetic modified
12
mining areas
12
modified sepiolite
8
sepiolite nanocomposite
8
isotherm model
8
antimony mining
8
adsorption
6
study adsorption
4
adsorption performance
4
performance carbon-magnetic
4

Similar Publications

A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.

View Article and Find Full Text PDF

Elemental mercury (Hg) emission from industrial boilers equipped in factories such as coal-fired power plants poses serious hazards to the environment and human health. Herein, an iron-modified biomass carbon (Fe/BC) magnetic adsorbent was prepared by a one-step method using pepper straw waste as raw material and potassium oxalate and ferric nitrate as activator and catalyst precursor, respectively. A fixed-bed reactor was used to evaluate the Hg removal performance of the Fe/BC adsorbent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!