Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs. Moreover, when the soil exposure concentration of BaP was 4 mg/kg, the NP-BaP group exhibited 10.67 % greater pigmentation than the BaP-only group. Despite the lower biota soil accumulation factor (BSAF) of earthworms in the NP-BaP group, the concentration of BaP in the soil remained at higher levels in the late stages of exposure. This led to NP-BaP inducing a stronger trend of oxidative damage compared to BaP alone. Furthermore, molecular-level studies indicated that the differential preferences of NPs and BaP for damaging antioxidant enzymes were linked to individual oxidative stress responses. This study confirmed that NPs, at non-toxic concentrations, could increase the persistence of BaP's biological toxicity after prolonged exposure, highlighting the potential safety risks of NPs as carriers of POPs to soil organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!