This study developed an electrochemical immunosensor for the detection of aflatoxin B1 (AFB1) in vegetable oil, based on an electrochemical modified carbon cloth (EMCC) electrode modified with a composite functional layer of cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs)/Prussian Blue (PB). The EMCC electrode substrate was prepared by modifying carbon cloth through electrochemical methods to increase its surface area, which allowed for the effective deposition of o-ATP@AuNPs/PB composite functional layer and improved the conductivity of the electrode material. The synergistic effect of o-ATP@AuNPs and PB significantly enhanced the sensitivity of the electrochemical sensor. Additionally, the AuS bond between L-Cysteine (L-Cys) and o-ATP@AuNPs improved the stability of the sensing interface. Under optimal conditions, the BSA/anti-AFB1/L-Cys/o-ATP@AuNPs/PB/EMCC sensor was able to detect AFB1 in the range of 0 to 20 ng mL using square wave voltammetry (SWV), with a detection limit of 0.015 ng mL. The proposed sensor holds promise for future applications in the sensitive detection of AFB1 in vegetable oils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.142765DOI Listing

Publication Analysis

Top Keywords

carbon cloth
12
modified carbon
8
detection aflatoxin
8
vegetable oil
8
afb1 vegetable
8
emcc electrode
8
composite functional
8
functional layer
8
electrochemical
5
electrochemical immunosensing
4

Similar Publications

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

Carbon Nanotube/Polymer Composites for Functional Applications.

Polymers (Basel)

January 2025

Department of Materials Science and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea.

Carbon nanotubes (CNTs) have garnered significant interest in the field of nanotechnology owing to their unique structure and exceptional properties. These materials find applications across a diverse array of fields, including electronics, environmental science, energy, and biotechnology. CNTs serve as potent reinforcing agents in polymer composites; even minimal additions can significantly improve the mechanical, electrical, and thermal properties of polymers.

View Article and Find Full Text PDF

Carbon filter layer for respirator derived from acrylic filter felt.

Waste Manag

January 2025

Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic.

Pyrolysis emerges as a strategy for handling waste textiles, wherein the conversion of high-carbon-content textile waste into carbonaceous materials facilitates the restoration of its economic value, concurrently mitigating the environmental impact posed by textile waste. The present study fabricated carbon felts for respiratory filter layers through single-step pyrolysis of acrylic filter felts. The advantage of employing conductive carbon felt as a respiratory filter layer is its capability to concurrently serve two functions: filtration and electrical heating for high-temperature disinfection.

View Article and Find Full Text PDF

This study developed an electrochemical immunosensor for the detection of aflatoxin B1 (AFB1) in vegetable oil, based on an electrochemical modified carbon cloth (EMCC) electrode modified with a composite functional layer of cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs)/Prussian Blue (PB). The EMCC electrode substrate was prepared by modifying carbon cloth through electrochemical methods to increase its surface area, which allowed for the effective deposition of o-ATP@AuNPs/PB composite functional layer and improved the conductivity of the electrode material. The synergistic effect of o-ATP@AuNPs and PB significantly enhanced the sensitivity of the electrochemical sensor.

View Article and Find Full Text PDF

Revealed mechanism of 3D-open-microarray boosting exoelectrogens Geobacter enrichment and extracellular electron transfer for high power generation in microbial fuel cells.

Bioresour Technol

January 2025

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065 PR China. Electronic address:

Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!