Surface electromyography (sEMG), a non-invasive technique, offers the ability to identify insights into the activities of muscles in the form of electrical pulses. During the process of recording, the sEMG signals frequently become contaminated by a multitude of different artifacts, the origin of which may be attributed to numerous sources. These artifacts affect the reliability and accuracy of the pure sEMG activity, and subsequently reduce the quality of analysis and interpretation. This can lead to a misinterpretation of sEMG signals, incorrect diagnostic, or a false decision in the case of human-machine interfaces (HMI), etc. Currently, several approaches have been developed to remove or reduce the effect of artifacts on the sEMG activity. In this paper, a comprehensive review of the current studies dealing with identification, detection, and removal of artifacts from sEMG signals is proposed. In addition, this study presents different features used to characterize the artifacts from that of the clean sEMG recordings. Finally, in order to improve the quality of denoising methods, the associated challenges of detection and artifact removal approaches are discussed to be addressed carefully in the future works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2025.109651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!