Background: Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise. However, the intricate mechanisms underlying TLR4's modulation of ceramide metabolism and their concerted effect on SFA-mediated hepatotoxicity remain elusive.
Methods: A NASH mouse model with liver-specific TLR4 knockdown was established through palm oil feeding and AAV2/8 tail vein injection. Histological and biochemical assessments were conducted to evaluate the mice's condition and liver damage extent. Liquid chromatography-mass spectrometry (LC-MS) was employed to quantify ceramide levels in liver tissues, offering insights into NASH mechanisms.
Results: The PO-fed model exhibited elevated serum ALT, AST, and liver TG levels, enhancing lipid accumulation and hepatocellular damage. TLR4 knock-down reduced liver mass and the liver-to-body weight ratio, signifying a decreased hepatic burden. Histopathological evaluations revealed substantial improvement in hepatic steatosis in TLR4-silenced PO-fed mice, with diminished lipid droplets and inflammatory infiltrates. LC-MS analysis showed a marked decrease in long-chain ceramides (C14, C16, C20) in TLR4-knockdown PO-fed mice. Furthermore, expression of MyD88, SPTLC1, SPTLC2, and inflammatory markers IL-1β, IL-6, TNF-α were significantly attenuated.
Conclusion: SFAs activate the TLR4 signaling pathway via MyD88, fostering ceramide de novo synthesis, which exacerbates hepatocyte lipotoxicity and accelerates NASH progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2025.114020 | DOI Listing |
Int Immunopharmacol
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China. Electronic address:
Background: Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise.
View Article and Find Full Text PDFMol Omics
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
The present work aimed to examine the primary mechanisms of liver damage, namely the impact of gut-derived endotoxins along the gut-liver axis and adipose-derived free fatty acids along the adipose-liver axis. These processes are known to play a significant role in the development of hepatic inflammation and steatosis. Although possible overlapping in the pathogenesis was expected, these processes have unique pathophysiological consequences.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Pathology & Diagnosis Pathological Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China. Electronic address:
Background And Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory lipotoxic disorder marked by hepatic steatosis, hepatocyte damage, inflammation, and varying stages of fibrosis. Sappanone A (SA), a flavonoid, exhibits anti-inflammatory and hepatoprotection activities. Nevertheless, the effects of SA on MASH remain ambiguous.
View Article and Find Full Text PDFAm J Pathol
December 2024
Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1/Alb mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India. Electronic address:
Lipotoxicity is a key pathological feature in the development of non-alcoholic steatohepatitis (NASH), which is characterized by liver injury, inflammation, and fibrosis. Although lipotoxicity has been shown to induce transcriptomic alterations in liver cells, the specific role of epigenetic regulators in NASH remains elusive. In this study, we demonstrate that pharmacological inhibition of histone methyltransferase G9a significantly worsens NASH progression in mice, as evidenced by increased hepatic cell death, inflammation, and fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!