Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood. Our study sought to quantify how pre-fire fuel loading influenced post-fire fuel decomposition through soil abiotic properties, as well as plant and soil fungal communities. Prior to spring prescribed burns, we manipulated fine fuel loads in plots, both near (<10 m) and away (>10 m) from overstory pines, to modify soil heating in an old-growth longleaf pine savanna. We then assessed how fuel load and soil heating influenced post-fire plant fuel decomposition through changes to soil chemistry, vegetation, and fungi. Burning larger fuel loads made fires hotter, burn longer, and more completely combusted fuels. In these plots, decomposition of newly deposited fine fuels was slower in the eight months following fire. Decomposition changes from greater soil heating were mediated by greater shifts to postfire plant (2 and 4 months postfire) and fungal communities (4 and 6 months postfire). Soil properties (C: N ratios, soil pH, and P) controlled postfire decomposition throughout the year, but weakly responded to soil heating differences from fuels. Since the mechanisms for fuel effects on decomposition change over time, fire timing may be a future target for understanding fire feedbacks to fuel decomposition. Integrating these feedbacks with fuel production responses across fire-dependent ecosystems can help managers better set prescribed fire intervals and predict responses to reintroducing burning in fire-suppressed ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2025.178386 | DOI Listing |
Sci Total Environ
January 2025
Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea. Electronic address:
The toxicity of electronic cigarette (EC) aerosol is influenced not only by the type of e-liquid but also by various operational parameters of the device used to vaporize it. In this study, we utilized a flask and heating mantle system, instead of a conventional EC device, to systematically evaluate the effects of EC device operational parameters, including vaporization temperature, airflow rate, and the materials of coils and wicks, on the generated mass of EC aerosol and the production of toxic carbonyl compounds. The results demonstrated that these parameters significantly impact aerosol mass and toxicant composition.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059 Nilüfer/Bursa-Türkiye.
This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.
View Article and Find Full Text PDFEvolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
Genetic differentiation in traits is assumed to frequently occur in response to divergent natural selection. For example, developmental traits might respond to differences in climate. However, little is known about when and at which spatial scales environmental differences lead to genetic differentiation, and to what extent there is genetic differentiation also in trait plasticity.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
Ensuring food security is one of the main challenges related to a growing global population under climate change conditions. The increasing soil salinity levels, drought, heatwaves, and late chilling severely threaten crops and often co-occur in field conditions. This work aims to provide deeper insight into the impact of single vs.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
Soil bacterial communities are crucial to various ecosystem services, with significant implications for environmental processes and human health. Delivering functional bacterial strains to target locations enhances the preferred ecological features. However, the delivery process is often constrained by limited bacterial transport through low-permeability soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!