Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data. We found a nonlinear relationship between final pupil diameter and luminance, linearized by considering the logarithm of luminance. Peak diameter change and peak velocity were nonlinear functions of log-luminance for constriction but not dilation responses. Across participants, curve fit parameters characterizing pupil responses as a function of luminance were highly variable, yet there was an across-participant linear correlation between overall pupil size and pupil gain (i.e., diameter change per unit log-luminance change). In terms of within-participant trial-by-trial variability, participants showed greater variability in final pupil size compared with constriction peak diameter change as a function of log-luminance. Despite the variability in stimulus-response metrics within and across participants, we found that all participants showed a highly stereotyped "main sequence" relationship between peak diameter change and peak velocity (independent of luminance). The main sequence relationship can be used to inform models of the neural control of pupil dynamics and as an empirical analysis tool to evaluate variability and abnormalities in pupil behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_02296DOI Listing

Publication Analysis

Top Keywords

pupil dynamics
16
diameter change
16
pupil
13
peak diameter
12
main sequence
8
pupil responses
8
inferences pupil
8
pupil data
8
final pupil
8
change peak
8

Similar Publications

Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data.

View Article and Find Full Text PDF

VARX Granger analysis: Models for neuroscience, physiology, sociology and econometrics.

PLoS One

January 2025

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States of America.

Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influenced by external factors. Disentangling delayed external effects from internal dynamics within these systems is often difficult. We propose using a Vector Autoregressive model with eXogenous input (VARX) to capture delayed interactions between internal and external variables.

View Article and Find Full Text PDF

Purpose: Photophobia is a common and debilitating symptom associated with migraine. Women are disproportionately affected by migraines, with a higher prevalence and more severe symptoms compared to men. This study investigated the effects of cortical spreading depression on light-aversive and dark-seeking behaviors in a rat model, with an emphasis on sex differences.

View Article and Find Full Text PDF

Aperiodic Pupil Fluctuations at Rest Predict Orienting of Visual Attention.

Psychophysiology

January 2025

Department of Psychology, Hangzhou Normal University, Hangzhou, Zhejiang, China.

The aperiodic exponent of the power spectrum of signals in several neuroimaging modalities has been found to be related to the excitation/inhibition balance of the neural system. Leveraging the rich temporal dynamics of resting-state pupil fluctuations, the present study investigated the association between the aperiodic exponent of pupil fluctuations and the neural excitation/inhibition balance in attentional processing. In separate phases, we recorded participants' pupil size during resting state and assessed their attentional orienting using the Posner cueing tasks with different cue validities (i.

View Article and Find Full Text PDF

People synchronize their movements more easily to rhythms with tempi closer to their preferred motor rates than with faster or slower ones. More efficient coupling at one's preferred rate, compared to faster or slower rates, should be associated with lower cognitive demands and better attentional entrainment, as predicted by dynamical system theories of perception and action. We show that synchronizing one's finger taps to metronomes at tempi outside of their preferred rate evokes larger pupil sizes, a proxy for noradrenergic attention, relative to passively listening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!