In the last decade, the emergence of variant strains of avian orthoreovirus (ARV) has caused an enormous economic impact on the poultry industry across China and other countries. This study aimed to evaluate the molecular evolution of the ARV lineages detected in Chinese commercial broiler farms. Firstly, ARV isolation and identification of commercial broiler arthritis cases from different provinces in China from 2016 to 2021 were conducted. A total of 51 pure ARV isolates were obtained. Sequencing results showed that there were five genotypes of the strains isolated in this study, of which genotype 1 ARV predominated, accounting for 56.9% (29/51). The whole gene sequences of 19 ARV representative isolates were successfully obtained. The genetic evolution analysis of 10 genome segments of 19 ARV isolates showed that the σC-encoding gene had evolved into six different lineages, while the other genome segments only differentiated into two to four different lineages. The results of recombination analysis showed that recombination events were present in the L3, M1 and S1 genome segments. Analysis of the variation of the key factor σC protein showed that the nucleotide and amino acid homologies of the σC were low among the different genotypes. Three-dimensional structural visualization analysis showed that all the structural changes of σC protein were concentrated in the spherical domain at the C-terminal, which is associated with host receptor binding.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03079457.2024.2435895DOI Listing

Publication Analysis

Top Keywords

genome segments
12
isolation identification
8
avian orthoreovirus
8
china 2016
8
2016 2021
8
commercial broiler
8
arv isolates
8
σc protein
8
arv
7
analysis
5

Similar Publications

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Crimean-Congo haemorrhagic fever virus (CCHFV), a Biosafety level 4 pathogen transmitted by ticks, causes severe haemorrhagic diseases in humans but remains clinically silent in animals. Over the past forty years, Nigeria lacks comprehensive genetic data on CCHFV in livestock and ticks. This study aimed to identify and characterize CCHFV strains in cattle and their Hyalomma ticks, the primary vector, in Kwara State, Nigeria.

View Article and Find Full Text PDF

Crop field monitoring using unmanned aerial vehicles (UAVs) is one of the most important technologies for plant growth control in modern precision agriculture. One of the important and widely used tasks in field monitoring is plant stand counting. The accurate identification of plants in field images provides estimates of plant number per unit area, detects missing seedlings, and predicts crop yield.

View Article and Find Full Text PDF

regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect.

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!