Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy.

J Phys Chem Lett

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.

Published: January 2025

Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties. This Perspective reviews key research on c-BAs and discusses the future potential of van der Waals (vdW) epitaxy and remote epitaxy for preparing high-quality c-BAs thin-films. Based on superlattice area mismatch calculations, we predict some potential substrates for these epitaxy techniques. Three important design considerations for future vdW or remote epitaxy of c-BAs thin-films are identified: superlattice matching at the heterointerface, the kinetics of B and As adatoms, and the surface modification of vdW or vdW/3D substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c03038DOI Listing

Publication Analysis

Top Keywords

cubic boron
8
boron arsenide
8
thermal management
8
remote epitaxy
8
c-bas thin-films
8
epitaxy
5
highly thermal-conductive
4
thermal-conductive cubic
4
arsenide single-crystal
4
single-crystal growth
4

Similar Publications

Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy.

J Phys Chem Lett

January 2025

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.

Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.

View Article and Find Full Text PDF

Direct Synthesis of Topology-Controlled BODIPY and CO2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction.

Angew Chem Int Ed Engl

January 2025

National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, 117585, Singapore, SINGAPORE.

Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO₂ as a feedstock.

View Article and Find Full Text PDF

In the high-stakes domain of precision manufacturing, Cubic Boron Nitride (CBN) inserts are pivotal for their hardness and durability. However, post-production surface defects on these inserts can compromise product integrity and performance. This paper proposes an automated detection and classification system using machine vision to scrutinize these surface defects.

View Article and Find Full Text PDF

The abrasives of traditional grinding wheels are usually randomly arranged on the substrate, reducing the number of effective abrasive grains involved in the machining during the grinding process. However, there are some problems such as uneven distribution of chip storage space, high grinding temperature, and easy surface burn. In trying to address this issue, an ultrasonic vibration 3D printing method is introduced to fabricate the structured CBN (Cubic Boron Nitride) grinding wheel.

View Article and Find Full Text PDF

An exploratory study of shielding strategies for boron neutron capture discrimination in B Neutron Capture Enhanced Particle Therapy.

Phys Med

January 2025

Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Australia. Electronic address:

Article Synopsis
  • The study investigates how different shielding strategies affect false positive rates in a neutron detection system for Neutron Capture Enhanced Particle Therapy (NCEPT).
  • A Monte Carlo model was created to simulate the effects of neutron detection and various shielding configurations on a specific phantom setup.
  • Results indicate that while shielding the detector crystal can worsen detection accuracy, adding a thin layer of GdO shield can enhance detection selectivity if boron is present in the detector's printed circuit boards.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!