Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties. This Perspective reviews key research on c-BAs and discusses the future potential of van der Waals (vdW) epitaxy and remote epitaxy for preparing high-quality c-BAs thin-films. Based on superlattice area mismatch calculations, we predict some potential substrates for these epitaxy techniques. Three important design considerations for future vdW or remote epitaxy of c-BAs thin-films are identified: superlattice matching at the heterointerface, the kinetics of B and As adatoms, and the surface modification of vdW or vdW/3D substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c03038 | DOI Listing |
J Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, 117585, Singapore, SINGAPORE.
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO₂ as a feedstock.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Ningbo Institute of Dalian University of Technology, Ningbo 315032, China.
In the high-stakes domain of precision manufacturing, Cubic Boron Nitride (CBN) inserts are pivotal for their hardness and durability. However, post-production surface defects on these inserts can compromise product integrity and performance. This paper proposes an automated detection and classification system using machine vision to scrutinize these surface defects.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
The abrasives of traditional grinding wheels are usually randomly arranged on the substrate, reducing the number of effective abrasive grains involved in the machining during the grinding process. However, there are some problems such as uneven distribution of chip storage space, high grinding temperature, and easy surface burn. In trying to address this issue, an ultrasonic vibration 3D printing method is introduced to fabricate the structured CBN (Cubic Boron Nitride) grinding wheel.
View Article and Find Full Text PDFPhys Med
January 2025
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!