The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review.

Curr Res Transl Med

Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.

Published: January 2025

This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks. Predictive analytics further enable personalized treatment plans by forecasting organ rejection, infection risks, and patient recovery trajectories, thereby supporting early intervention strategies and long-term patient management. AI also optimizes operational efficiency within transplant centers by predicting organ demand, scheduling surgeries efficiently, and managing inventory to minimize wastage, thus streamlining workflows and enhancing resource allocation. Despite these advancements, several challenges hinder the widespread adoption of AI and ML in organ transplantation. These include data privacy concerns, regulatory compliance issues, interoperability across healthcare systems, and the need for rigorous clinical validation of AI models. Addressing these challenges is essential to ensuring the reliable, safe, and ethical use of AI in clinical settings. Future directions for AI and ML in transplantation medicine include integrating genomic data for precision immunosuppression, advancing robotic surgery for minimally invasive procedures, and developing AI-driven remote monitoring systems for continuous post-transplantation care. Collaborative efforts among clinicians, researchers, and policymakers are crucial to harnessing the full potential of AI and ML, ultimately transforming transplantation medicine and improving patient outcomes while enhancing healthcare delivery efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.retram.2025.103493DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence machine
8
machine learning
8
learning organ
8
organ retrieval
8
retrieval transplantation
8
transplantation medicine
8
organ
7
transplantation
5
impact artificial
4

Similar Publications

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.

View Article and Find Full Text PDF

Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.

Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a prevalent complication among critically ill patients, constituting around 10% of intensive care unit (ICU) admissions and mortality rates ranging from 35 to 46%. Hence, early recognition and prediction of ARDS are crucial for the timely administration of targeted treatment. However, ARDS is frequently underdiagnosed or delayed, and its heterogeneity diminishes the clinical utility of ARDS biomarkers.

View Article and Find Full Text PDF

Background: Artificial intelligence has gradually been used into various fields of medical education at present. Under the background of moxibustion robot teaching assistance, the study aims to explore the relationship and the internal mechanism between learning engagement and evaluation in three stages, preparation before class, participation in class, and consolidation after class.

Methods: Based on the data investigated in 250 youths in university via multistage cluster sampling following the self-administered questionnaire, structural equation model was built to discussing factors of study process about moxibustion robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!