Highly Efficient Blue Light-Emitting Diodes Enabled by Gradient Core/Shell-Structured Perovskite Quantum Dots.

ACS Nano

MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Province Engineering Research Center of Quantum Dot Display, School of Materials Science and Engineering, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

Published: January 2025

Room temperature (RT) synthesized mixed bromine and chlorine CsPbBrCl perovskite quantum dots (Pe-QDs) offer notable advantages for blue quantum dot light-emitting diodes (QLEDs), such as cost-effective processing and narrow luminescence peaks. However, the efficiency of blue QLEDs using these RT-synthesized QDs has been limited by inferior crystallinity and deep defect presence. In this study, we demonstrate a precise approach to constructing high-quality gradient core-shell (CS) structures of CsPbBrCl QD through anion exchange. Characterization shows that these CS-QDs exhibit a type-I band alignment with a high bromine concentration in the core and a high chlorine concentration in the shell. This unique configuration results in a larger exciton binding energy and reduced defect density, leading to enhanced exciton radiative recombination. Consequently, QLEDs using CS-QDs achieve an external quantum efficiency (EQE) of 16.28%, a maximum luminance of 8423.35 cd/m, and improved operational stability, surpassing the 12.80% EQE of reference QLEDs made with homogeneous structured QDs (HS-QDs). These findings present a strategy for developing high-quality RT-synthesized blue CS-QDs, marking a significant advancement in the field of efficient pure-blue QLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14276DOI Listing

Publication Analysis

Top Keywords

light-emitting diodes
8
perovskite quantum
8
quantum dots
8
qleds
5
highly efficient
4
blue
4
efficient blue
4
blue light-emitting
4
diodes enabled
4
enabled gradient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!