The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99 % ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202421287DOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogenolysis
16
axially chiral
16
pd-catalyzed asymmetric
8
hydrogenolysis rearrangement
8
rearrangement allylic
8
chiral olefins
8
allylic acetates
8
synthesis axially
8
hydrogenolysis
4
allylic esters
4

Similar Publications

The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99 % ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.

View Article and Find Full Text PDF

Developing a method for the tandem hydrogenative hydrogenolysis of bio-based furfuryl aldehydes to methylfurans is crucial for synthesizing sustainable biofuels and chemicals; however, it poses a challenge due to the easy hydrogenation of the C=C bond and difficult cleavage of the C-O bond. Herein, a palladium (Pd) single-atom-supported covalent organic framework was fabricated and showed a unique 2,5-dimethylfuran yield of up to 98.2 % when reacted with 5-methyl furfuryl aldehyde in an unprecedented water solvent at 30 °C.

View Article and Find Full Text PDF

Total Synthesis of (-)-Fasicularin.

J Org Chem

August 2024

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

Asymmetric total synthesis of (-)-fasicularin was achieved in nine steps from a commercially available inexpensive material, by leveraging (1) an aryl radical-mediated, copper-catalyzed Sonogashira-type cross-coupling, (2) a Au-catalyzed tandem intramolecular alkyne hydroamination/iminium formation/intramolecular allylation, and (3) a tandem hydrogenation/hydrogenolysis/intramolecular reductive amination as key transformations.

View Article and Find Full Text PDF

Catalytic Asymmetric Synthesis of Zinc Metallacycles.

J Am Chem Soc

September 2023

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Transition-metal-catalyzed reductive coupling reactions of alkynes and imines are attractive methods for the synthesis of chiral allylic amines. Mechanistically, these reactions involve oxidative cyclization of the alkyne and the imine to generate a metallacyclic intermediate, which then reacts with H or a H surrogate to form the product. As an alternative to this hydrogenolysis pathway, here we show that transmetalation to zinc can occur, forming a zinc metallacycle product.

View Article and Find Full Text PDF

Reductive Hydrogenation of Sulfido-Bridged Tantalum Alkyl Complexes: A Mechanistic Insight.

Inorg Chem

July 2023

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, E-28805 Alcalá de Henares, Madrid, Spain.

Article Synopsis
  • - Hydrogenolysis of tantalum(IV) dinuclear complexes with alkyl sulfido-bridges produced a tetrametallic sulfide cluster and corresponding alkanes through a systematic hydrogenation process involving intermediates.
  • - The hydrogenation of a phenyl-substituted precursor revealed a stepwise mechanism, leading to a tetranuclear hydride sulfide as an unstable intermediate.
  • - Further experiments with tantalum alkyl compounds containing functional groups showed diverse reaction pathways, resulting in asymmetric complexes and complex transformations like dearomatization, which were analyzed through computational methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!