Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework.

Nanomaterials (Basel)

Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Published: December 2024

Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid). Structural analysis shows that the is a neutral 3D framework with one-dimensional channels connected by [Ln(HO)] as nodes and CO as linkers. Magnetic measurements show that exhibits very weak antiferromagnetic interactions with a maximum -Δ value of 36.6 J kg K (-Δ = 74.47 mJ cm K) at 2 K and 7 T. The -Δ value is 28.4 J kg K at 2 K and 3 T, which is much larger than that of commercial GdGaO (GGG), indicating its potential as a low-temperature magnetic refrigerant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722047PMC
http://dx.doi.org/10.3390/nano15010032DOI Listing

Publication Analysis

Top Keywords

magnetic refrigerants
8
low-temperature magnetic
8
magnetocaloric gdiii-oxalate
4
gdiii-oxalate coordination
4
coordination framework
4
framework cryogenic
4
magnetic
4
cryogenic magnetic
4
refrigerants based
4
based magnetocaloric
4

Similar Publications

High Entropy: A General Strategy for Broadening the Operating Temperature of Magnetic Refrigeration.

J Am Chem Soc

January 2025

Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.

View Article and Find Full Text PDF

Attaining sub-Kelvin temperatures remains technologically challenging and often relies on the scarce resource He, unless employing adiabatic demagnetization refrigeration. Herein, the active coolant typically consists of weakly coupled paramagnetic ions, whose magnetic interaction strengths are comparable in energy to the relevant temperature regime of cooling. Such interactions depend strongly on inter-ion distances, fundamentally hindering the realization of dense coolants for sub-Kelvin refrigeration.

View Article and Find Full Text PDF

Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

Magnetocaloric Effect in 3D Gd(III)-Oxalate Coordination Framework.

Nanomaterials (Basel)

December 2024

Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Materials Science and Engineering, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.

Cryogenic magnetic refrigerants based on the magnetocaloric effect (MCE) hold significant potential as substitutes for the expensive and scarce He-3. Gd(III)-based complexes are considered excellent candidates for low-temperature magnetic refrigerants. We have synthesized a series of Ln(III)-based metal-organic framework (MOF) (Ln = Gd/Dy) by the slow release of oxalates in situ from organic ligands (disodium edetate dehydrate (EDTA-2Na) and thiodiglycolic acid).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!