Solar Light-Driven Efficient Degradation of Organic Pollutants Mediated by S-Scheme MoS@TiO-Layered Structures.

Nanomaterials (Basel)

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Published: December 2024

This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios. Thus, this study presents a comparative analysis of the photocatalytic performance of the 1:1 (MOT11) and 1:4 (MOT14) heterostructures. The formation of these heterostructures was confirmed through Energy-Dispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Notably, the bandgaps of MOT11 and MOT14 were red-shifted to 1.66-1.25 eV and 1.01-1.68 eV, respectively, indicating improved visible-light absorption capabilities. The photocatalytic activity of MOT11 and MOT14 was evaluated through the degradation of Rhodamine B (RhB) under simulated solar irradiation. MOT11 demonstrated a high degradation efficiency of 98.9% within 60 min, while MOT14 achieved 98.21% degradation after 90 min of irradiation. The significance of this study lies in its demonstration that a facile synthesis route and a small proportion of MoS in the heterostructure can achieve excellent photocatalytic degradation performance under solar light. After MS-analysis, S-Scheme has been suggested, which has also been complimented by the scavenger tests. Additionally, the improved photocatalytic properties of MOT11 and MOT14 suggest their potential for future applications in hydrogen generation and water splitting, offering a pathway towards sustainable and clean energy production.

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano15010028DOI Listing

Publication Analysis

Top Keywords

mot11 mot14
16
photocatalytic activity
8
mos/tio heterostructures
8
mos tio
8
degradation
5
photocatalytic
5
mot11
5
mot14
5
solar light-driven
4
light-driven efficient
4

Similar Publications

Solar Light-Driven Efficient Degradation of Organic Pollutants Mediated by S-Scheme MoS@TiO-Layered Structures.

Nanomaterials (Basel)

December 2024

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

This study focuses on achieving high photocatalytic activity using MoS/TiO heterostructures (MOT). To this end, MoS and TiO were synthesized by employing hydrothermal synthesis techniques, and then MoS/TiO heterostructures were synthesized by using 1:1, 1:2, 1:3, and 1:4 ratios of MoS and TiO, respectively. While the structural and electronic changes for the 1:2 and 1:3 ratios were relatively minor, significant modifications in bandgaps and morphology were observed for the 1:1 and 1:4 ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!