Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs). These peptides are secreted by granular glands in the skin and protect the animal against microorganisms entering its body through the skin. AMPs offer an effective and rapid defense against pathogenic microorganisms and have cationic and amphiphilic structures. These peptides are small gene-encoded molecules of 8-50 amino acid residues synthesized by ribosomes. These small molecules typically exhibit activity against bacteria, viruses, fungi, and even cancer cells. It is known that today's amphibian AMPs originated from a common precursor gene 150 million years ago and that the origin of these peptides is preprodermaseptins. Today, antibiotic resistance has occurred due to the incorrect use of antibiotics. Traditional antibiotics are becoming increasingly inadequate. AMPs are considered promising candidates for the development of new-generation antibiotics. Therefore, new antibiotic discoveries are needed. AMPs are suitable molecules for new-generation antibiotics that are both fast and have different killing mechanisms. One of the biggest problems in the clinical applications of AMPs is their poor stability. AMPs generally have limited tropical applications because they are sensitive to protease degradation. Coating these peptides with nanomaterials to make them more stable can solve this problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298665356946241218103145 | DOI Listing |
Protein Pept Lett
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:
Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.
View Article and Find Full Text PDFToxicon
January 2025
Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.
View Article and Find Full Text PDFJ Asian Nat Prod Res
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.
Antimicrobial peptides are crucial components of the immune systems of both vertebrates and invertebrates. Here, defensins, the most studied class of antimicrobial molecules in arthropods were investigated in four coleopteran insect species: (DeGeer, 1774), (Linnaeus, 1767), (Linnaeus, 1758), and (Brullé, 1832). The peptides synthesized with over 95% purity and their antimicrobial activities were evaluated by MIC test method.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!