The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH. The AB stacking might be induced by the Li promoted Lewis acid-base interactions with the nitrogen atoms of -triazine units which would endow the -triazine units with a charged state and enlarge the total crystal stacking energy. Specifically, the shift in the stacking mode speeds up electron transfer within each layer and along interlayers, thereby improving the photocatalytic activity. spc-CTF-4@AB features superior activity over the eclipsed stacking counterpart (spc-CTF-4@AA) in sacrificial agent-free HO generation, comparable to the state-of-the-art COF photocatalysts, which has not been demonstrated in this field before. This work demonstrates that regulating the interlayer-stacking mode of COFs can endow them with high photocatalytic activity, further inspiring the development of heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707676 | PMC |
http://dx.doi.org/10.1039/d4sc06451h | DOI Listing |
Chem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology Beijing, School of Chemistry and Biological Engineering, CHINA.
Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
Food Chem
March 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China. Electronic address:
Development of ultra-sensitive and rapid fluorescent nanoprobe for quantitative and targeted monitoring of metronidazole is of crucial practical significance, but is of great challenge. Herein, a vinyl-linked covalent organic frameworks (sp-BNTP-COF) was fabricated via integrating the 1,3,5-tris-(4-formylphenyl) triazine with 5,5'-bis(cyanomethyl)-2,2'-bipyridine into the skeleton. As-obtained sp-BNTP-COF exhibited excellent luminescence characteristics with an absolute fluorescence quantum yield of 8 %.
View Article and Find Full Text PDFSmall
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!