This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature. The findings reveal that both cutting speed and depth of cut are critical in determining machining outcomes. Specifically, a low cutting speed of 88 m/min coupled with a high depth of cut of 0.20 mm was found to elevate the cutting temperature to approximately 835 °C, resulting a surface roughness of 0.59 μm. Conversely, increasing the cutting speed to 120 m/min while reducing the depth of cut to 0.10 mm significantly lowered the temperature to around 607 °C, resulting a surface roughness of 0.19 μm; thus, thereby improving surface finish and reducing thermal stress on the tool. Additionally, a 27 % reduction in cutting temperature and a minimum surface roughness of 0.19 μm were achieved with optimal settings of 120 m/min cutting speed, 0.08 mm/rev feed rate, and 0.10 mm depth of cut. The study demonstrates the effectiveness of RSM in optimizing machining parameters for optimum temperature and better surface finish in the titanium alloy machining.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714727PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41051DOI Listing

Publication Analysis

Top Keywords

surface roughness
24
cutting speed
16
depth cut
16
cutting temperature
12
surface finish
12
surface
11
optimization cutting
8
temperature surface
8
turning ti-6al-4v
8
ti-6al-4v alloy
8

Similar Publications

The shear resistance of filling joints is an important factor affecting the stability of rock joints. Pressure-shear tests of cement-filled joints were carried out. Combined with the acoustic emission (AE) technique, the effects of normal stress, roughness and filling degree on the shear strength, damage morphology and damage evolution of cement-filled joints were investigated.

View Article and Find Full Text PDF

The mechanical properties of jointed rock bodies are important in guiding engineering design and construction. Using the particle flow software PFC2D, we conducted direct shear test simulations on joints with various inclinations and five different roughness levels to examine the models' crack extension penetration paths, damage modes, and strength characteristics. The findings indicate that the direction of the joint influences the pattern of the rock crack and its penetration route.

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.

Material And Methods: The plate-shaped UT-Zr samples were fabricated.

View Article and Find Full Text PDF

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!