Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes. To identify species with specialized roles, we studied three scavenger networks (one in north temperate Spain and two in central-south Mediterranean Spain) that comprised 25 scavenger species (65% birds and 35% mammals), consuming carcasses of four wild ungulate species. We characterized the trophic role of a species by combining four species-level network metrics (normalized degree, specialization, closeness, and betweenness centrality) into a single centrality metric, quantifying how scavenger species interact with carcass species within their ecological network. Higher centrality indicates the species feeds on a greater variety of carcasses and may contribute more to carrion consumption than species with lower centrality, which have more peripheral and specialized roles. The griffon vulture () and the azure-winged magpie () had the highest centrality. In contrast, the red kite () in the northern site had the lowest centrality, and the Egyptian vulture () was among the most peripheral species for all three networks. In general, scavengers with large home ranges and nocturnal or crepuscular activity patterns tended to have more central roles, whereas species that forage silently tended to have more peripheral roles. Changes in species' centrality between sites and the high centrality of species with large home ranges suggest that management strategies in one location can have implications that extend beyond, highlighting the need to implement coordinated transboundary protection efforts to ensure the resilience and functionality of scavenger networks and derived ecosystem services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711106PMC
http://dx.doi.org/10.1002/ece3.70485DOI Listing

Publication Analysis

Top Keywords

scavenger species
16
species
15
trophic roles
8
roles scavenger
8
roles species
8
specialized roles
8
scavenger networks
8
centrality
8
large ranges
8
roles
7

Similar Publications

Neuron Modulation by Synergetic Management of Redox Status and Oxidative Stress.

Small

January 2025

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.

The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.

View Article and Find Full Text PDF

Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO as a photocatalyst for the degradation of chloramphenicol.

View Article and Find Full Text PDF

(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.

View Article and Find Full Text PDF

In recent years, the invasive Atlantic blue crab () has increased its spread throughout the Mediterranean Sea, threatening native biodiversity and local economies. This study aimed to valorize sampled in Sicily by utilizing its exoskeleton as a source of chitosan, astaxanthin, and bio-phenolic compounds. These biomolecules were evaluated for their reducing, radical scavenging, and antitumor activity.

View Article and Find Full Text PDF

is a medicinal mushroom widely utilized in traditional East Asian medicine, recognized for its diverse therapeutic properties. This review explores the potential of -derived bioactive gels for applications in dermatology and skincare, with a particular focus on their therapeutic and anti-aging benefits. In response to the rising incidence of skin cancers and the growing demand for natural bioactive ingredients, has emerged as a valuable source of functional compounds, including cordycepin, polysaccharides, and adenosine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!